Second-site suppression of RNase E essentiality by mutation of the deaD RNA helicase in Escherichia coli.
نویسندگان
چکیده
Escherichia coli cells normally require RNase E activity to propagate and form colonies. Using random Tn10 insertion mutagenesis, we screened for second-site suppressor mutations that restore colony-forming ability (CFA) to E. coli cells lacking RNase E function and found mutations in three separate chromosomal loci that had this phenotype. Restoration of CFA by mutations in two of the genes identified was observed only in nutrient-poor medium, whereas the effects of mutation of the ATP-dependent RNA helicase DeaD were medium independent. Suppression of the rne mutant phenotype by inactivation of deaD was partial, as rne deaD doubly mutant bacteria had a greatly prolonged generation time and grew as filamentous chains in liquid medium. Moreover, we found that CFA restoration by deaD inactivation requires normal expression of the endogenous rng gene in doubly mutant rne deaD cells. Second-site suppression by deaD mutation was attributable specifically to ablation of the helicase activity of DeaD and was reversed by adventitious expression of RhlE or RNase R, both of which can unwind double-stranded RNA. Our results suggest a previously unsuspected role for RNA secondary structure as a determinant of RNase E essentiality.
منابع مشابه
Nutrient dependence of RNase E essentiality in Escherichia coli.
Escherichia coli cells normally require RNase E activity to form colonies (colony-forming ability [CFA]). The CFA-defective phenotype of cells lacking RNase E is partly reversed by overexpression of the related endoribonuclease RNase G or by mutation of the gene encoding the RNA helicase DeaD. We found that the carbon source utilization by rne deaD doubly mutant bacteria differs from that of rn...
متن کاملAllosteric activation of the ATPase activity of the Escherichia coli RhlB RNA helicase.
Helicase B (RhlB) is one of the five DEAD box RNA-dependent ATPases found in Escherichia coli. Unique among these enzymes, RhlB requires an interaction with the partner protein RNase E for appreciable ATPase and RNA unwinding activities. To explore the basis for this activating effect, we have generated a di-cistronic vector that overexpresses a complex comprising RhlB and its recognition site ...
متن کاملMolecular recognition of RhlB and RNase D in the Caulobacter crescentus RNA degradosome
The endoribonuclease RNase E is a key enzyme in RNA metabolism for many bacterial species. In Escherichia coli, RNase E contributes to the majority of RNA turnover and processing events, and the enzyme has been extensively characterized as the central component of the RNA degradosome assembly. A similar RNA degradosome assembly has been described in the α-proteobacterium Caulobacter crescentus,...
متن کاملThe Escherichia coli RNA degradosome: structure, function and relationship in other ribonucleolytic multienzyme complexes.
mRNA instability is an intrinsic property that permits timely changes in gene expression by limiting the lifetime of a transcript. The RNase e of Escherichia coli is a single-strand-specific endo-nuclease involved in the processing of rRNA and the degradation of mRNA. A nucleolytic multi-enzyme complex now known as the RNA degradosome was discovered during the purification and characterization ...
متن کاملRibonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome.
The Escherichia coli RNA degradosome is the prototype of a recently discovered family of multiprotein machines involved in the processing and degradation of RNA. The interactions between the various protein components of the RNA degradosome were investigated by Far Western blotting, the yeast two-hybrid assay, and coimmunopurification experiments. Our results demonstrate that the carboxy-termin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 194 8 شماره
صفحات -
تاریخ انتشار 2012